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Abstract
Discovering a lexicon from unlabeled audio is a longstanding
challenge for zero-resource speech processing. One approach is
to search for frequently occurring patterns in speech. We revisit
this idea by proposing DUSTED: Discrete Unit Spoken-TErm
Discovery1. Leveraging self-supervised models, we encode in-
put audio into sequences of discrete units. Inspired by alignment
algorithms from bioinformatics, we find repeated speech patterns
by searching for similar sub-sequences of units. Since discretiza-
tion discards speaker information, DUSTED finds better matches
across speakers, improving the coverage and consistency of the
discovered patterns. We demonstrate these improvements on the
ZeroSpeech Challenge, achieving state-of-the-art results on the
spoken-term discovery track. Finally, we analyze the duration
distribution of the patterns, showing that our method finds longer
word- or phrase-like terms.
Index Terms: spoken-term discovery, pattern matching, zero
resource speech processing

1. Introduction
Spoken-term discovery relies on finding matching speech seg-
ments representing words or short phrases. The main difficulty is
the enormous variability of spoken language. Words are seldom
said the same way due to differences in speaking rate, intonation,
pronunciation, context, and speaker identity. Another challenge
is segmentation – delineating continuous speech into separate
words [1]. Unlike the spaces between written words, speech
rarely has easily identifiable boundaries. Despite this complex-
ity, children learn to recognize a few words even before their
first birthday [2]. Their vocabulary expands rapidly over the next
years, growing to about a thousand words by age three [3, p.282].

Recently, the ZeroSpeech Challenge [4] has driven progress
on this problem. The goal is to build systems that generalize
across languages without requiring textual annotations or labels.
Such systems could facilitate low-resource speech technology [5]
or serve as cognitive models of language acquisition [6].

Although various methods have been developed to tackle
spoken-term discovery [7–9], many submissions to the Zero-
Speech Challenge rely on dynamic time-warping (DTW) [10–
13]. These methods trace back to the Segmental-DTW algo-
rithm [10]. The basic idea is to search for similar speech patterns
by aligning pairs of utterances using DTW. Intuitively, shared
words between the utterances will sound similar, leading to low-
distortion regions in the alignment.

However, DTW methods have several drawbacks. With
increasing dataset sizes, aligning every pair of utterances has
become infeasible. Instead, these methods use heuristics such as

1Code available at https://github.com/bshall/dusted

pre-filtering and windowing to manage computational costs [11].
Additionally, since alignments depend on spectral features that
contain speaker-specific information, matching words across
speakers is less likely than within the same speaker. As a result,
words infrequently repeated by the same speaker may not be
discovered. Finally, setting hyperparameters that perform consis-
tently across different datasets and languages is challenging [13].

To tackle these limitations, we revisit the idea of pattern
matching using discrete speech representations. Leveraging
recent self-supervised speech models, we encode input audio
into sequences of discrete units that capture phonetic content
while discarding speaker-specific details [14, 15]. Next, we find
matching segments across pairs of utterances by searching for
common sub-sequences of units.

We evaluate our method on the spoken-term discovery track
of the ZeroSpeech Challenge. We investigate language pre-
training and clustering strategies and analyze the speaker invari-
ance and duration distribution of the discovered patterns.

Our main contributions are:
1. We propose DUSTED: Discrete Unit Spoken-TErm Discovery.

Our approach significantly increases the number of discovered
pairs, particularly cross-speaker matches (Section 4.3).

2. We investigate the trade-off between the quality and quantity
of discovered pairs (Section 4.1). By adjusting a similarity
threshold, we can prioritize coverage or phonemic similarity.
We show similar threshold settings perform consistently across
languages and give state-of-the-art results.

3. We investigate native language effects due to the discrete units
by comparing pattern matching on one language using discrete
units learned on another (Section 4.2). In contrast to previous
work [16], we find that the units are not language-independent
and that language-specific models improve performance.

2. Method
Our method consists of two parts. First, the content encoder
extracts discrete representations of speech. Next, the pattern
matcher builds a set of candidate words by searching for similar
speech segments across pairs of utterances.

2.1. Content Encoder

The content encoder extracts discrete speech representations that
capture phonetic content while discarding speaker-specific de-
tails [17]. This is crucial for matching patterns across different
speakers. For the same reason, discrete units have also been
successful in tasks like voice conversion [15, 18] and speech-
to-speech translation [19]. Here, we discretize input speech by
clustering features from an intermediate layer of HuBERT [14].
Formally, given a sequence of features ⟨z1, . . . , zT ⟩, we replace
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the cow(a)
DH AH K AW(b)

56 39 24 33 63 47 35 9 71 75(d)
56 39 39 24 33 63 47 35 35 35 9 71 71 71 71 71 75 75 41 75 75(c)

Figure 1: Content Encoder. An example segmentation of the
phrase ‘the cow’. a) Ground truth word boundaries. b) Aligned
phonemic transcription. c) Discrete speech units extracted by
clustering features from an intermediate layer of HuBERT. d)
A grouping of the units into longer segments using the method
described in Section 2.1.

each frame with the index of the nearest cluster centroid. Fig-
ure 1(c) illustrates this step.

Often, neighboring frames belong to the same cluster. Nev-
ertheless, some acoustically similar frames are mapped to dif-
ferent units. For instance, the end of the vowel /AW/ in Fig-
ure 1(b) is split between clusters 75 and 41. So, to group the
frames into longer segments we apply the dynamic program-
ming method from [20]. Specifically, we partition the frames
into a sequence of contiguous segments ⟨g1, . . . , gN ⟩, where
each segment gn = (an, bn, in) is defined by a start step an, an
end step bn, and a representative cluster index in. We determine
the segmentation by minimizing the total distance between the
features and their assigned cluster centroids:

E(z1:T , g1:N ) =
∑

gn∈g1:N

bn∑
t=an

∥zt − ein∥ − γ(bn − an),

where ei is the ith centroid. The last term in the summation
encourages longer segments, with γ controlling its weight. With-
out the regularizer, the optimal segmentation places each frame
in its own segment. Figure 1(d) shows an example segmenta-
tion where the units in row (c) are combined into longer groups.
Ultimately, the content encoder represents an utterance as the
sequence of cluster indexes given by the segmentation.

2.2. Pattern Matcher

After translating input speech into sequences of discrete units,
the pattern matcher searches for similar fragments across pairs
of utterances. The intuition is that matching fragments should
represent common words or phrases. Specifically, we find the
most similar sub-sequence given discrete representations for two
utterances ⟨x1, . . . , xN ⟩ and ⟨y1, . . . , yM ⟩. We identify sim-
ilar sub-sequences using the Smith-Waterman algorithm [21],
originally designed for nucleic acid or protein sequence align-
ment. The algorithm accounts for variability in the sequences
by allowing insertions, deletions, and substitutions. Figure 2
shows an example alignment using the algorithm. The orange
path represents the most similar sub-sequence between the two
utterances, which includes a gap and a substitution (in bold):

Top: 42 80 70 49 78 81 56 95 23 93 1
Left: 42 80 70 49 78 -- 56 95 40 93 1

We score the sub-sequences based on similarity (how many
units they have in common). We apply the pattern matcher to
each pair of utterances in a dataset and record matches scoring
above a similarity threshold τ . The threshold controls the trade-
off between the quantity and quality of the discovered patterns
(see the experiments in Section 4.1).

Next, we describe the four steps of the algorithm:
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Figure 2: Pattern Matcher. The scoring matrix and alignment
path for two instances of the word ‘something’. The first row
and column show discrete representations of the words (ob-
tained from the content encoder, Figure 1). The highest score
(highlighted in orange) represents the similarity of the aligned
sub-sequences. The orange arrows visualize the traceback path.

1. Determine a scoring scheme. First, we define a substitution
function sim(x, y) that returns a score for matching cluster
centroids x and y. This score is positive if x and y are similar
and negative if dissimilar. In this paper, we only consider
exact matches:

sim(x, y) =

{
+1, if x = y,

−1, if x ̸= y.

However, this formulation allows more flexible measures of
similarity. For example, we could specify different scores
for matching units representing sonorants, obstruents, or si-
lences [22]. We also define a gap penalty W for including an
insertion or deletion in the alignment. We set W = 1 for all
experiments.

2. Fill the scoring matrix. Next, we set up a scoring matrix
H of size (N + 1) × (M + 1). A cell Hi,j represents the
maximum similarity between two sub-sequences ending in xi

and yj . We initialize the first row and column of H to zeros
and iteratively fill H from left to right and top to bottom using
the recurrence:

Hi,j = max


Hi−1,j−1 + sim(xi, yj),

Hi−1,j −W,

Hi,j−1 −W,

0

The first line is the score for aligning xi with yj . The sec-
ond and third lines are the scores for an insertion or dele-
tion. Finally, the zero represents no similarity between the
sub-sequences. Figure 2 shows the scoring matrix for the
sequences along the top and left.

3. Traceback to find the most similar sub-sequence. The
traceback starts at the highest-scoring element in H above the
similarity threshold τ (highlighted in orange in Figure 2). If
two or more elements are tied for the maximum, we select
the one with the lowest index sum i+ j (towards the top-left
corner in Figure 2). From this starting point, we recursively
trace back by visiting the neighboring element that leads to the
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Figure 3: Comparison with the Baselines. Coverage versus
NED for DUSTED (at different similarity thresholds τ ) and
three state-of-the-art systems built on dynamic time-warping.

maximum score. We stop the procedure when we encounter
a zero. The orange arrows illustrate the traceback path in
Figure 2.

4. Iteratively identify all matching sub-sequences. The scor-
ing matrix may include multiple matches above the similarity
threshold τ . We use the rescoring method from [23] to find
the next highest-scoring alignment. To avoid overlapping
matches, we set all cells along the previous traceback path to
zeros and recompute the scoring matrix. Only part of H needs
to be updated since only elements below and to the right of
the path are affected. We repeat the traceback and rescoring
steps (3 and 4) until no matches above the threshold remain.

3. Experimental Setup
We conduct four experiments evaluating DUSTED. First we
compare DUSTED to three state-of-the-art systems built on
dynamic time-warping: PDTW [13], Syl-DTW [24], and JHU-
UTD [11]. Next, we examine the effect of pre-training language.
Specifically, we investigate pattern matching on one language
using discrete units learned on another. Then, we analyze the
impact of discrete units on cross-speaker matches, confirming
DUSTED’s improvements stem from speaker invariance. Finally,
we examine the duration distribution of the discovered patterns,
showing that DUSTED finds longer word- or phrase-like terms.

We evaluate DUSTED on the spoken-term discovery track
of the ZeroSpeech Challenge [4]. The challenge covers five
languages: English, Mandarin, French, German, and Wolof.
We limit our experiments to languages with publicly available
HuBERT models (English2, Mandarin3, and French4). We were
unable to find a language-specific model for French. So we use a
multilingual model trained on French, English, and Spanish [19].

3.1. Implementation Details

We split the evaluation datasets into short audio clips using the
voice activity detection markers provided by the challenge. Then,
we extract features for each language using the corresponding
HuBERT model. Following previous work [15], we take ac-
tivations from the 7th transformer layer because they perform
well for phone discrimination [14, 25]. We cluster the features
using k-means with 100 clusters. Next, we apply the method
described in Section 2.1 to segment the features, setting the dura-

2
https://huggingface.co/facebook/hubert-base-ls960

3
https://huggingface.co/TencentGameMate/chinese-hubert-base

4
https://huggingface.co/voidful/mhubert-base
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Figure 4: Effect of Language Pre-training and Clustering. We
compare pattern matching on one language using discrete units
learned on another. We report coverage versus NED at different
similarity thresholds τ .

tion weight γ = 0.2, following [22]. Finally, we find matching
patterns between each pair of utterances in the language dataset
using the method in Section 2.2. We filter out short matches
that are unlikely to contain complete words. Specifically, we
ignore matches below 200ms given that the average duration
of a consonant-vowel syllable is 156ms at a normal speaking
rate [26]. We report results at thresholds τ from 6 to 12.

3.2. Evaluation Metrics

We evaluate spoken-term discovery using the matching met-
rics provided by the ZeroSpeech Challenge. The first metric is
coverage: the proportion of the corpus covered by the patterns
(higher is better). The second is normalized edit distance (NED),
which measures the phonemic similarity between discovered
pairs. Computing NED requires phonemic transcriptions for
each discovered pattern, which are extracted from forced align-
ments. A phoneme is included in a transcription if it overlaps
with the pattern by more than 30ms or 50% of its duration. Then,
the normalized Levenshtein distance between the transcriptions
of each discovered pair is computed. Finally, NED reports the
average distance over all pairs (lower is better).

4. Results
4.1. Comparison to State-of-the-Art Systems

This section compares DUSTED to existing methods based on
dynamic time-warping. Typically, spoken-term discovery sys-
tems balance NED against coverage. DUSTED controls this
trade-off through the similarity threshold τ . Increasing the
threshold encourages more similar but longer matches. However,
being more restrictive leads to fewer pairs and lower coverage.
We further investigate the effect of the threshold on the duration
of the discovered patterns in Section 4.4.

Figure 3 reports the performance of DUSTED at different
thresholds alongside three state-of-the-art methods. The ideal
system would be in the bottom-right corner of the figure (low
NED and high coverage). Regardless of the threshold, DUSTED
outperforms other methods operating at similar trade-off points.
At comparable coverage, we improve NED over PDTW by 13.5
points on average. Additionally, the threshold’s effect is rela-
tively consistent across languages, allowing us to reliably priori-
tize NED or coverage.

A drawback of DUSTED is the amount of data required to
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Figure 5: A comparison of the number of within- and across-
speaker pairs discovered by PDTW [13] and DUSTED.

train the content encoder on new languages [14]. While DTW-
based methods rely on spectral features, we use self-supervised
models trained on large datasets to learn meaningful representa-
tions of speech. One method to address this limitation is transfer
learning from a model trained on well-resourced languages. We
analyze the effect of language transfer in the next section.

4.2. Effect of Language Pre-training and Clustering

We investigate the native language effect of the content encoder
in two scenarios:

1. The training language of the content encoder and k-means
clustering differs from the evaluation language. For example,
we could use an English HuBERT clustered on English data
to encode French speech.

2. We cluster on the evaluation language, but the content encoder
is trained on a different language. Here, we could use an
English HuBERT but cluster on French data.

Scenario 1 represents the largest mismatch between the content
encoder and evaluation language. We test all combinations of
training and evaluation languages using the hyperparameters
described in Section 3.1.

Figure 4 presents our findings. Overall, matching the train-
ing and evaluation languages leads to the best performance. Com-
pared to the mismatched content encoders (other lines with circle
markers), these results suggest that HuBERT learns language-
specific representations, contradicting previous work [16]. How-
ever, clustering on the evaluation language (triangle markers)
improves performance despite a mismatched content encoder,
showing we can mitigate some language mismatch.

The results for the multilingual content encoder are par-
ticularly interesting. Although the pre-training languages in-
clude English, the multilingual encoder performs worse than
the English-specific model. Additionally, when evaluating on
Mandarin, multilingual training gives no advantage over training
solely on English. Previous studies argue that multilingual train-
ing results in transferable representations [27]; however, we do
not see this advantage in our experiments. To summarize, match-
ing the content encoder’s pre-training language to the evaluation
language is best for spoken-term discovery.

4.3. Analysis of Speaker Invariance

This section analyzes the speaker composition of the discov-
ered patterns. Figure 5 compares the number of pairs found by
DUSTED and PDTW, divided into across-speaker and within-
speaker matches. Our method discovers more patterns in each

0 200 400 600 800 1000 1200 1400
Duration (ms)

102

103

104

105

106

Nu
m

be
r o

f p
at

te
rn

s

6

7

8

9
10

11
12

= 10 3

= 10 4

DUSTED
PDTW

Figure 6: The duration distribution of discovered patterns on
English for DUSTED (at different similarity thresholds τ ) and
PDTW [13] (at different significance thresholds α).

language, in line with the coverage results from Section 4.1.
Importantly, DUSTED predominantly finds pairs from differ-
ent speakers: over 80% of the matches found by DUSTED are
cross-speaker, compared to less than 50% for PDTW. These
findings demonstrate that the discrete speech units effectively
discard speaker information. As a result, the pattern matcher
can discover terms based on content rather than speaker-specific
details. This is essential for spoken-term discovery since many
words and phrases will not be repeated by the same speaker. In
contrast, PDTW relies on spectral features that contain speaker
information, limiting the number of cross-speaker matches.

4.4. Duration of Discovered Fragments

Finally, we examine the durations of the discovered patterns. Ide-
ally, the patterns should capture words or short phrases spanning
hundreds of milliseconds to over a second. Figure 6 shows dura-
tion distributions for DUSTED and PDTW at different thresholds.
As discussed in section 4.1, raising the threshold τ encourages
longer matches with higher similarity, reflected in a larger aver-
age duration of the patterns. However, more restrictive thresholds
reduce the number of matches, lowering overall coverage.

Figure 6 shows that DUSTED discovers longer fragments
compared to PDTW. To reduce computational costs, PDTW im-
poses a maximum window size on alignments, limiting the length
of the discovered patterns to 700ms. Consequently, PDTW dis-
covers shorter fragments concentrated around 100 ms—roughly
the duration of a syllable [26]. On the other hand, DUSTED does
not set an upper limit on the matches. As a result, we discover
patterns ranging from 200 to 1400ms, which represent longer
word- or phrase-like units.

5. Conclusion
This paper introduced DUSTED, a new spoken-term discovery
method combining pattern matching with discrete speech units.
Since discrete units discard speaker information, DUSTED finds
matches based on phonetic content rather than speaker details.
This results in significantly more discovered patterns, particu-
larly across speakers. Our experiments showed that DUSTED
outperforms existing systems on the ZeroSpeech Challenge, im-
proving the quality and quantity of the discovered terms. We
also evaluated the impact of pre-training language on the discrete
speech units. Our findings indicate that self-supervised represen-
tations are not language-independent, and that language-specific
models can improve spoken-term discovery.
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