
Large language models

Herman Kamper

2024-04, CC BY-SA 4.0

GPT is just a transformer language model

From language model to assistant

More on RLHF
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High-level introduction
Intro to large language models by Andrej Karpathy [slides]
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https://youtu.be/zjkBMFhNj_g?si=dU7KNFP0_C_AQGuH
https://drive.google.com/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7/view


GPT is just a transformer language model
Inference: Predict one word at a time and feed it back in

<s> looksit

ŷ1 ŷ2 ŷ3

sample

The model outputs the next word and then feeds that in as its own
input to the next time step. In general, a model that takes its own
output as input is called autoregressive.

There are different ways of sampling the output word from the predicted
output distribution:

• Take the maximum
• Sample using the predicted probabilities
• Sample only from top-k highest probabilities
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Training time: Predict all the next words and backprop

<s> looksit

ŷ1 ŷ2 ŷ3

forgotyou bracelike a

ŷ4 ŷ5 ŷ6 ŷ7 ŷ8

</s>

Masking ensures that the model cannot look into the future for pre-
dicting the output at the current time step. I.e. what happens during
training resembles what happens during inference.1

This is not an encoder-decoder model: it’s a decoder-only model.

My illustrations are with words, but the language model (LM) probably
uses subword units like BPE. The basic architecture, I think, is still
the one from (Radford et al., 2018).

Why is GPT so much better than previous LMs?

• Size of model
• Size of data: Compression of the internet (Karpathy)

1See the explanation of masking in my transformers note.
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https://www.kamperh.com/nlp817/notes/11_transformers_notes.pdf


From language model to assistant
Three steps to go from GPT to ChatGPT:

1. Pretraining: Next-word prediction as above (GPT)

2. Finetuning on expert examples

3. Reinforcement learning from human feedback (RLHF)

2. Finetuning on expert examples

Get high-quality data and add <prompt> and <answer> tags:

<prompt>
Can you help me with this code? It seems like there is
a bug.
print(“hello world)
</prompt>

<answer>
It looks like you forgot to close the string passed to
the function print. You have to add a closing quote to
properly terminate the string. Here is the corrected
function:

print(“hello world”)

Let me know if I can help with anything else!
</answer>

You can think of this as supervised learning, but really it is still exactly
the same task as the task used during pretraining. The dataset is just
swapped out and training is continued.

It is a little bit amazing that all of the knowledge gained during
pretraining isn’t wiped out.
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3. Reinforcement learning from human feedback (RLHF)

Reinforcement learning (RL):

Agent

Environment

Action
a

Reward
r

New state
s

In our case the action is an answer a = y1:M to a given prompt
s = x1:T and we want to update the language model so that it outputs
high-reward answers (i.e. the type of answers a human would give).

But what reward function should we use?

We learn a reward function by asking humans to rank possible outputs:2

The result is even more assistant-like behaviour.

But Rafailov et al. (2023) and others say that it isn’t really necessary
to use reinforcement learning to update the model: you can do it
directly through supervised learning by backpropping through the
learned reward model.

2Figure by Andrej Karpathy.
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More on RLHF

Learning a reward model from humans
For prompt x1:T , the reward model hϕ(x1:T , y1:M ) ∈ R should output

• Large positive values for good answers y1:M
• Large negative values for bad answers y1:M

To train the model, we use a dataset of prompts each with candidate
answers. The answers can be generated from our current LM or we
can ask human experts to write answers (or a mixture of these).

Say we have B = 3 candidate answers:3

y(1)
1:M(1) y(2)

1:M(2) y(3)
1:M(3)

We then get a human to select their favorite answer. Let b ∈
{1, 2, . . . , B} indicate the selection.

We then train hϕ by modelling the probability of the selection as

Pϕ

(
selected = b

∣∣∣x1:T , {y(k)
1:M}B

k=1

)
= ehϕ(x1:T ,y(b)

1:M )∑B
j=1 ehϕ(x1:T ,y(j)

1:M )

I.e. hϕ are the logits in a softmax classifier.

We train the classifier using the negative log likelihood loss. With one
training example consisting of a prompt x1:T , B candidate answers
{y(k)

1:M}B
k=1 and the selection b, the loss is

J(ϕ) = − log Pϕ

(
b

∣∣∣x1:T , {y(k)
1:M}B

k=1

)
= − log ehϕ(x1:T ,y(b)

1:M )∑B
j=1 ehϕ(x1:T ,y(j)

1:M )

3Each candidate answer will have a different length M (j) that I denote explicitly
here but will now drop.
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RL using the learned reward model
We denote the parameters of our LM before RLHF as θ.

Intialise the parameters of the RL agent LM: π ← θ

As actual reward function we combine the learned reward model and
a penalty so that the agent LM doesn’t drift too far from the original:

r(x1:T , y1:M) = hϕ(x1:T , y1:M)− β log Pπ(y1:M |x1:T )
Pθ(y1:M |x1:T )

Normally in RL we have cycles of taking an action, getting a reward
and moving to a new state. Here we have just one episode where for
a prompt x1:T we generate an answer y1:M and get reward r:

Environment

Action
a = y1:M

Reward
r(x1:T ,y1:M)

Agent
π

Prompt
x1:T

Initialise
θ

The agent LM parameters π are updated using proximal policy opti-
misation (PPO). I won’t get into this here, but you can have a look
at these resources to understand this RL learning approach:

• PPO theory by Ehsan Kamalinejad
• Proximal policy optimization explained by Edan Meyer

See (Ziegler et al., 2020) for further details on RLHF.
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https://www.youtube.com/watch?v=3uvnoVjM8nY
https://www.youtube.com/watch?v=HrapVFNBN64


Why learn a reward model instead of just asking humans?

An alternative to learning a reward model beforehand would have just
been to ask humans directly to rate outputs as our model produce it.
We could then get the reward directly (and probably more accurately)
in our RL loop. But this would be much much slower than first learning
a reward model, fixing it, and then running the RL loop very quickly
(since we don’t have to wait for a slow human to respond).
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Videos covered in this note
• Large language model training and inference (14 min)
• The difference between GPT and ChatGPT (13 min)
• Reinforcement learning from human feedback (RLHF) (15 min)

Further reading
I found Andrej Karpathy’s blog post Deep reinforcement learning:
Pong from pixels helpful.
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