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Strategy
Instead of directly jumping into the details (as most courses do), I first
want to try and give the bigger picture. But to do this it is helpful
to know how probabilistic graphical models (PGMs) are represented.
So I first cover representation, then give the bigger picture, and only
then get into the details.
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Representation
Barber (2020, Sec. 4.1):

Whilst not a strict separation, GMs tend to fall into two
broad classes—those useful in modelling, and those useful
in representing inference algorithms. For modelling, belief
networks, Markov networks, chain graphs and influence
diagrams are some of the most popular. For inference one
typically “compiles” a model into a suitable GM for which
an algorithm can be readily applied. Such inference GMs
include factor graphs and junction trees.

This section reviews PGM representations that are useful for modelling.
Representations useful for inference (specifically factor and cluster
graphs) are covered later.
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Directed PGMs: Bayesian networks
Different names for the same thing, fortunately all with the same
abbreviation (BN):

• Belief network
• Bayes net(work)
• Bayesian network

A directed graph:1

The above Bayesian network encodes the joint:

P (g, s, r) = P (g|s, r)P (s|r)P (r)

Storing the conditional probability tables are often more efficient than
storing the full joint

(However, in the example PGM this isn’t actually true. But if sprinkler
was independent of rain, it would be more efficient.)

1Figure from Wikipedia.
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In general the joint probability density for a Bayesian network:

p(x1, x2, . . . , xD) =
D∏

d=1
p (xd|pa(xd))

Graphically:

• Random variables are round nodes.
• Observed variables are shaded.
• Repetitions are indicated using plate notation.
• Parameters (or hyper-parameters) that are not considered ran-

dom variables are dots (sometimes).

Bayesian networks are useful for graphically reading off (conditional)
independencies (Barber 2020, Def. 3.3).

Example: Gaussian mixture model (GMM)

π

N

K

µk

Σk

x(n)

z(n)
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Undirected PGMs: Markov random fields
Different names for the same thing:

• Markov random field
• Markov network

An undirected graph:

x1

x2

x3x4

x5

Each edge represents a dependency: x1 depends on x2 and x4; x2
depends on x1 and x4; x4 depends on x1, x2, and x5; x5 depends on
x4 and x3; and x3 depends on x5.

The above Markov random field encodes the joint density:

p(x1, x2, x3, x4, x5) = 1
Z

ϕ1(x1, x2, x4)ϕ2(x4, x5)ϕ3(x3, x5)

where Z is a normalisation constant.

The ϕ(x1, x2, . . . , xD) functions:

• Are called factors or potentials.
• Are non-negative.
• A probability density function is a special case of a factor, one

that normalises to 1. (They don’t normalise to 1 in general.)
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In general the joint probability density for a Markov random field:

p(x1, x2, . . . , xD) = 1
Z

C∏
c=1

ϕc(Xc)

where the product is over the (maximal) cliques in the graph, Xc is
the subset of variables in clique c, and Z is a normalisation constant.

Example: Ising model

Example from (Barber 2020, Sec. 4.2.5). You have a grid of “mini-
magnets”, each with a binary value xi ∈ {−1, +1} indicating its
direction. Neighbouring magnets want to have the same orientation.

x2 x3

x4 x5

x1

x6

x7 x8 x9

p(x1, x2, . . . , x9) = 1
Z

∏
i∼j

ϕi,j(xi, xj)

where i ∼ j are indices where i and j are neighbours.

ϕi,j(xi, xj) = exp
{

− 1
2τ

(xi − xj)2
}

where τ is a temperature parameter.
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Can be used for simple image restoration:2

2Figure from (Barber 2020).
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Bigger picture

1. Representation
How is a model drawn, written, mathematically expressed, or coded?
Some representations are useful for modelling (main ones are described
above) while others are useful for inference (below).

2. Inference
Given that the grass is wet, what is the probability that it rained
P (r|g = wet)? We can assume we know the values in the tables
(i.e. the parameters are known).

Inference is what we do when we use a model to answer questions.

More formally: If we have a probabilistic model for which we know all
the parameters, then inference (reasoning) is performed by setting some
of the variables to observed states, and then computing probabilities
of interest conditioned on this evidence (Barber 2020, Sec. 2.1).

3. Learning
We have a model with parameters θ. Given that we have observed
some data D, what is the θ that best explains the data?

Rain example: Now we do not know the parameters in the tables, and
we need to learn these from previously observed data (g(n), s(n), r(n)).

Latent variables: Very often in learning we also have latent (hid-
den) variables that are not observed directly. E.g. in a GMM we
can observe {x(1), x(2), . . . x(N)}, but we don’t have direct access to
{z(1), z(2), . . . z(N)}.
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Strategy

Many PGM courses systematically go through (1), (2), (3) in sequence,
but this is tricky since some representations are coupled with specific
inference methods and (as we shall see very soon) inference and
learning are often closely tied.

So my strategy will be to jump around, with the aim of starting with
concepts that are more familiar and then moving to the less familiar.
I do find it helpful to sometimes just take a step back and ask myself
whether I am busy with (1), (2) or (3).

To illustrate things in the remainder of this note, I will mainly use
Bayesian networks.

10



Learning
We want to learn the parameters θ of a model so that it best describes
observed data D (Barber 2020, Sec. 8.6).

• Supervised learning: D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))

}
• Unsupervised learning: D = {x(1), x(2), . . . , x(N)}

There are several ways of learning θ.

Maximum likelihood estimation

θ̂MLE = arg max
θ

p(D|θ) = arg max
θ

pθ(D)

We treat θ as parameters (not random variables) that we need to set
to have a high likelihood.

Examples: Getting expressions for the mean of a Gaussian. Or for
learning the parameters of a neural network, in which case we often
use:

θ̂ = arg max
θ

N∑
n=1

log Pθ(y(n)|x(n))

which is the same as minimising the negative log likelihood loss.
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Bayesian modelling

p(θ|D) = p(D|θ)p(θ)
p(D) ∝ p(D|θ)p(θ)

We treat θ as random variables and get a posterior distribution given
the data.

The Bayesian approach says nothing about how we should use this
distribution to make predictions.

But we can do the following to make a prediction for a new input x:3

p(y|x, D) =
∫

θ
p(y, θ|x, D) dθ =

∫
θ

p(y|x, θ)p(θ|D) dθ

There are some arguments (Gal and Ghahramani 2015) that dropout
can be seen as a way to represent uncertainty in neural networks
(although this is apparently a bit controversial—and I don’t know
enough to comment on it).

Maximum a posteriori (MAP)

θ̂MAP = arg max
θ

p(θ|D) = arg max
θ

p(D|θ)p(θ)

A point summary of the posterior p(θ|D).

Many regularisation methods can be seen as a MAP estimate, e.g. L1
and L2 regularisation.

Maximum likelihood corresponds to MAP if we use a flat prior for the
parameters p(θ).

3See (Murray 2018a) and (Murray 2018b) respectively for regression and
classification examples.
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Learning 101: Expectation maximisation
If all variables are observed, maximum likelihood estimation is easy:

rainsprinklr
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But if we have latent variables it is not so easy:
π

N

K

µk

Σk

x(n)

z(n)

Chicken and egg problem:

• If we knew the parameters, then we could infer the latents.
• If we could observe the latents, then we could just do maximum

likelihood.

Intuition: We guess initial parameters θ(0), infer the latents, do
maximum likelihood to get new parameters θ(1), infer the latents, etc.
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The expectation maximisation (EM) algorithm
• E-step: Determine

Pθ(m)(z(n)|x(n))

for n = 1, 2, . . . , N . This requires inference, which in some
cases is easy (e.g. in a GMM) but in other cases requires some
of the inference methods described below (e.g. in an HMM we
need message passing).

• M-step:

θ(m+1) = arg max
θ

N∑
n=1

∑
z(n)

Pθ(m)(z(n)|x(n)) log pθ(x(n), z(n))

GMM example:4

4Figure from Wikipedia.
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More formally
For a full formal discussion, have a look at my EM note. I summarise
it briefly.

We want to maximise the likelihood of our parameters:
arg max

θ
pθ(D) = arg max

θ
log pθ(D)

Let’s say we only have a single training item: D = {x(n)}.5

log pθ(x(n)) = log
∑
z(n)

pθ(x(n), z(n))

The log-of-sum is irritating since it is difficult to differentiate.

So we get a lower bound that has sums-of-logs:
log pθ(x(n)) ≥ −J(Q, θ)

with
−J(Q, θ) =

∑
z(n)

Q(z(n)) log pθ(x(n), z(n)) −
∑
z(n)

Q(z(n)) log Q(z(n))

= EQ

[
log pθ(x(n)|z(n))

]
+ EQ

[
log pθ(z(n))

]
− EQ

[
log Q(z(n))

]
−J is called the evidence lower bound (ELBO) and Q is some helper
distribution that we need to choose.

In classic EM (the one we are doing here) we set
Q(z(n)) = Pθ(m)(z(n)|x(n))

(There is a really good reason for this: The bound becomes tight.
Don’t worry if you do not get this from just this description—you
would need to go through the full EM note.)

The reason I am explaining all of this is that when we get to variational
inference (which can be used for Bayesian models), you will see that
we also optimise the ELBO but we set Q in a different way.

5I will do this a lot in this note. It is easy to extend to the full dataset.
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EM as a black-box approach?
EM can be used for doing maximum likelihood estimation or MAP
estimation when we have latent variables.

But EM cannot be applied to all models, e.g. it is difficult to use in
this classic form for latent Dirichlet allocation (LDA).

So, although I really like EM, it cannot be used as the basis for a
black-box framework in general.
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Learning as inference
This is the title of Chap. 9 of (Barber 2020), and it is mentioned often
in PGM courses. I never understood what this meant.

Inference: If we know the model and we have some observations,
answering questions about some of the variables in the model.

Learning: Figuring out the parameters from observed data.

But what if we treat our parameters as random variables?
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Being Bayesian: Our parameters as random variables
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β

If we can answer questions about random variables in our model
(inference) and our parameters are random variables, then we can
answer questions about our parameters (learning) using inference
methods. So we can learn by doing inference.
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The grand goal of probabilistic modelling
I want to draw, write or code my model and then have some black-box
method do inference/learning for me.

E.g. I want to be able to code up either the Bayesian rain model or the
Bayesian GMM above in the same framework and have that framework
do inference/learning for both these models.

Example from Stan for linear regression:

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

for (n in 1:N)
y[n] ~ normal(alpha + beta * x[n], sigma);

}
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Or I might want to do inference and learning in the following model,
that I just made up:

(Disclaimer/spoiler: I don’t think this is possible yet. If it is, please
implement this model and come and show me.)

Seperating model from algorithm

Linked to the grand goal.

Shakir Mohamed often points out that it is useful to think of your model
separately from the algorithm that you use to do inference/learning.

I.e. it is sometimes useful to just think about the model definition
itself, before thinking about how you couple it with data via some
inference/learning algorithm.

I have found this view helpful quite a few times when I was getting
confused about some specific intricate details.
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Three “classes” of inference/learning
approaches

1. Belief propagation (message passing)

2. Sampling

3. Variational inference

The distinction between these are not always strict, e.g. variational
message passing.
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Belief propagation
Belief propagation is a type of message passing algorithm that is used
to do inference in probabilistic graphical models (Wikipedia).

Different names for the same thing:

• Sum-product algorithm
• Shafer-Shenoy algorithm
• Belief propagation

Belief propagation can be applied on different types of representations.
Factor graphs are useful since they can represent both Bayesian net-
works and Markov random fields. Cluster graphs is a generalisation of
factor graphs.

At Stellenbosch University, if someone says they are working with
PGMs, this probably means that they are doing something with belief
propagation.
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Factor graphs
The summary of factor graphs on Wikipedia is pretty good.

The joint density for a factor graph:

p(x1, x2, . . . , xD) = 1
Z

∏
i

fi(Xi)

where Xi is the set of variables that factor fi operates on and Z is a
normalisation constant.

Graphically:

• An undirected graph.
• Variable nodes are round.
• Factor nodes are rectangular.

All the variables associated with a factor are neighbours to it.

Any Bayesian network or Markov random field can be represented as
a factor graph.

Example: Converting a Bayesian networks to a factor graph

fa(x1) fb(x2)

x1 x2

fc(x1, x2, x3)

x3

fd(x3, x4) fe(x3, x5)

x5x4

x1 x2

x3

x4 x5

p(x1) p(x2)

x1 x2

p(x3|x1, x2)

x3

p(x4|x3) p(x5|x3)

x5x4

Figure adapted from (Murphy 2012, Fig. 22.3)
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Belief propagation on a factor graph

Messages of real valued functions are passed between nodes (Barber
2022, Proc. 5.1):

g1

g2

g3

x
f

y1

y2

y3

µx→f (x)

µf→x(x)

• Initialisation:

– Messages from leaf factor nodes: Set to factor.
– Message from leaf variable nodes: Set to unity.

• Variable-to-factor messages:
µx→f (x) =

∏
g∈{ne(x)\f}

µg→x(x)

• Factor-to-variable messages:
µf→x(x) =

∑
Y

f(x, Y)
∏

y∈{ne(f)\x}
µy→f (y)

where Y = {ne(f)\x}, so ∑Y marginalises out all the variables
of factor f apart from x (e.g. marginalising out y1, y2, y3).

Messages are only sent after all incoming messages are received.

• Termination:

– Marginal for singly connected graphs (i.e. trees):
p(x) ∝

∏
f∈ne(x)

µf→x(x)

– Belief for loopy graphs:
bel(x) ∝

∏
f∈ne(x)

µf→x(x)
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Belief propagation is exact in trees

• We get the exact true probabilities.
• Only need to pass messages once.
• (Chains are also trees.)

You have actually already seen belief propagation: It is a generalisation
of the forward-backward algorithm used in HMMs.

What if we have loops?

1. Convert graph to a tree: Junction tree algorithm. In the extreme
case you end up with a single factor with all the variables,
which means you don’t get any saving from belief propagation
compared to just explicitly evaluating the full joint distribution.

2. Use your loopy graph, pretend you don’t notice, and just do
belief propagation: Loopy belief propagation.

• Multiple rounds of message passing (with the order having
an effect).

• The result is approximate.

Dealing with evidence

Two options (Barber 2020, Sec. 5.1.3):

1. Set evidence variables Xe to observed states, define new factors,
do belief propagation.

2. Multiply factor with an indicator function that sets anything to
zero if an evidence variable xe is not in its observed state.
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Cluster graphs
Cluster graphs is a generalisation of factor graphs.6

Can also formulate belief propagation in terms of cluster graphs:

There are also variations and extensions of loopy belief propagation
on cluster graphs: Loopy belief update (Lauritzen-Spiegelhalter). See
(Du Preez 2022a, Sec. 19.1).

Stellenbosch University people really like cluster graphs.

6Figures by Werner van der Merwe.
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Thoughts on belief propagation
Works well when we have a small number of variables and have a good
idea of how they interact (independencies).

In these cases (known unknowns), PGM representations can be way
more efficient than storing the full joint.

It is also useful to know about it as a generalisation of forward-
backward.

But I suspect it is difficult to scale if we have millions of parameters
where we are unsure of how they interact (unknown unknowns).

We have really only looked above at the case for discrete variables:
What do you do if they are continuous? Gaussian belief propagation.
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Sampling

Why sampling?
We can approximate expected values (Resnik and Hardisty 2010):

E [f(θ)] ≈ 1
L

L∑
l=1

f(θ(l))

where θ(l) ∼ p(θ) are samples from p(θ).
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Example: Bayesian GMM

x(n)

z(n)

πk

α

K

µk
Σk

K

N

β

In this model we have the following random variables (some observed):

• Observed data: X = {x(1), x(2), . . . , x(N)}
• Latent component assignments: z = {z(1), z(2), . . . z(N)}
• Mixture weights: π = [π1, π2, . . . , πK ]
• Component means: {µk}K

k=1 = {µ1, µ2, . . . , µK}
• Component covariance matrices: {Σk}K

k=1 = {Σ1, Σ2, . . . , ΣK}

We can bunch all these together:

θ =
{
X , z, π, {µk}K

k=1, {Σk}K
k=1

}

Now say we want to know the assignment of observed item x(n).
Then we can use the above sampling equations with f(θ) = z(n) to
approximate E

[
z(n)

]
, i.e. the expected component to which item x(n)

is assigned.

This seems simple enough, but we need to actually be able to sample
from p(θ) in order to do this.

We look at two methods. Both are instances of Markov chain Monte
Carlo (MCMC).
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Gibbs sampling
Core idea: Cycle through variables and sample in turn from p(θi|θ\i).

E.g, if we have three variables θ1, θ2, and θ3 then we would sample:

θ
(s+1)
1 ∼ p(θ1|θ(s)

2 , θ
(s)
3 )

θ
(s+1)
2 ∼ p(θ2|θ(s+1)

1 , θ
(s)
3 )

θ
(s+1)
3 ∼ p(θ3|θ(s+1)

1 , θ
(s+1)
2 )

So in general we cycle through the variables and sample in turn from

θ
(s+1)
i ∼ p(θi|θ(s+1)

1 , . . . , θ
(s+1)
i−1 , θ

(s)
i+1, . . . , θ

(s)
D )

Note that we still need to have expressions for and be able to sample
from all of these p(θi|θ\i) distributions. To get these, it often helps
to use conjugate priors.
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Gibbs example: 2D Gaussian

The mean and covariance are known parameters.

Gibbs example: Bayesian GMM

We would need to be able to sample from

P (z(n) = k|z\n, X , π, {µk}K
k=1, {Σk}K

k=1)
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Collapsed and blocked Gibbs sampling
Collapsed Gibbs sampling

In some cases we are able to analytically integrate out some of the
unknown variables and then just need to sample the rest.

E.g. in the Bayesian GMM, if we choose the priors pα(π) and
pβ(µk, Σk) carefully (specifically that they are conjugate priors to
some of the other distributions), then we just have to sample the
component assignments

P (z(n)|z\n, X )

You can get the details in my note on Bayesian GMMs. Also see the
corresponding demo that makes use of collapsed sampling.

Blocked Gibbs sampling

In some cases we can sample groups of variables together:

θ
(s+1)
1 , θ

(s+1)
2 ∼ p(θ1, θ2|θ(s)

3 , θ
(s)
4 , θ

(s)
5 , θ

(s)
6 )

θ
(s+1)
3 , θ

(s+1)
4 ∼ p(θ3, θ4|θ(s+1)

1 , θ
(s+1)
2 , θ

(s)
5 , θ

(s)
6 )

θ
(s+1)
5 , θ

(s+1)
6 ∼ p(θ5, θ6|θ(s+1)

1 , θ
(s+1)
2 , θ

(s+1)
3 , θ

(s+1)
4 )
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Metropolis-Hastings
Gibbs sampling is actually a special case of the Metropolis-Hastings
algorithm (and both are instances of MCMC).

The Metropolis-Hastings algorithm:

• Sample a proposed move from a proposal distribution:

θ′ ∼ q(θ′; θ(s))

• Do we accept the proposal?

P (accept) = min
(

1,
p(θ′) q(θ(s); θ′)

p(θ(s)) q(θ′; θ(s))

)

• if accept:
θ(s+1) = θ′

else:
θ(s+1) = θ(s)

Reminder: We are trying to sample from the true unknown distribu-
tion p(θ). Note that above we do not need to know this distribution,
but we need to be able to evaluate it at a specific point, i.e. we need
to be able to get the height of the PDF at a given sample value.

To understand the acceptance probability better, let’s look at the
symmetric case where q(θa; θb) = q(θb; θa):

P (accept) = min
(

1,
p(θ′)

p(θ(s))

)

So if the proposal is better than the current sample according to p(θ)
(the true unknown distribution that we are trying to sample from),
then we definitely move. Otherwise we move proportional to how the
probability of the proposal compares to that of the current sample.
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A popular proposal distribution:

q(θ′; θ(s)) = N (θ′; θ(s), Σ)

where Σ is a hyperparameter that we need to set.

Metropolis-Hastings example: 2D Gaussian
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Sampling in practice
We want a black-box method where we can draw, write, or code a
model and then have a general purpose package do inference/learning
for us.

A number of probabilistic programming languages have been under
development for a while now and are continuing to be developed.
Several of them use MCMC-based sampling:

• BUGS
• JAGS
• Stan

My (very limited) experience of these languages matches that of
Murphy’s (2012, Sec. 24.2.6):

Although this approach is appealing, unfortunately it can
be much slower than using hand-written code, especially
for complex models.
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Variational inference
The terminology (VI, VB, VBEM, VMP) that I use here roughly follows
that of Murphy (2012, Chap. 21).

These methods are called variational since we optimise over functions:
Instead of just having parameters that we change to minimise a loss
function, we also have functions that we can themself change to
minimise the loss function. (In practice, we normally still end up just
optimising the parameters of these variational functions.)
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Variational inference (the Pyro setup)
We start with a setting that isn’t fully Bayesian (yet), but very common.
This setting is followed in Pyro. We have a model with:

• Latent variables z for which we have a prior distribution.

• Parameters θ for which we want to get a point estimate, probably
using maximum likelihood. (If we were Bayesian, we would
have defined a prior over these parameters and tried to get a
distribution over them instead of a point estimate.)

One example of exactly this setting is in a variational autoencoder:

x

z

θ

p(z) = N (z;0, I)

fθ(z) = NeuralNetθ(z)

We optimise a model by pushing up a lower bound called the evidence
lower bound (ELBO). We have seen this before when I introduced
EM.

For now, let’s say we have a dataset with a single training point x(n).
Then we have (following the procedure in my EM note):

log pθ(x(n)) ≥ Eq

[
log pθ(x(n)|z(n))

]
+ Eq

[
log pθ(z(n))

]
− Eq

[
log q(z(n))

]
= −J(q, θ)

Here q(z) is a helper distribution and −J(q, θ) is the ELBO. By
maximising the ELBO, the hope is that we will get a θ with a high
log likelihood log pθ(x(n)).
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The ELBO can also be written as:

−J(q, θ) = −DKL
(
q(z(n)) ∥ pθ(z(n)|x(n))

)
+ log pθ(x(n))

This helps us to see that, when we are maximising the ELBO, then
we are really trying to find a q(z) that approximates the posterior
pθ(z|x).

So far we have been following exactly the same route as in classical
EM:

• In the E-step in classic EM, we would set q(z(n)) =
pθ(m)(z(n)|x(n)) using the current estimate of θ(m).

• In general variational inference, we instead optimise the ELBO
by specifying a useful form for qϕ(z) (e.g. Gaussian) and then
find the optimal parameters ϕ. So we minimise −J(ϕ, θ).

• (Again, this is exactly what happens in a variational autoen-
coder.)

We call ϕ the variational parameters and qϕ(z) the variational distri-
bution. In Pyro, they call qϕ(z) the guide, since it guides us towards
the intractable posterior.

Note that in classical EM we are guaranteed to improve log pθ(x(n)) at
every step because the bound is tight. This is not the case in general
variational inference.
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Applied to the variational autoencoder

x

z

θ

p(z) = N (z;0, I)

fθ(z) = NeuralNetθ(z)

We often choose:

p(z) = N (z; 0, I)
pθ(x|z) = N (x; fθ(z), σ2I)

We want to maximise the log likelihood by changing θ:

log pθ(x(n)) = log
∫

z
pθ(x(n)|z)p(z) dz

Even though we have chosen specific forms for p(z) and pθ(x|z) (so it is
easy to go forward), the marginalisation really messes up optimisation:
you end up having to take derivates of a log-of-a-sum/integral, which
is much harder than taking the derivative of a sum-of-logs.

So instead, we maximise the ELBO.

This introduces a guiding distribution qϕ(z). What this does is really
serve as an approximation for the tricky pθ(z|x). So we can write
(informally):

qϕ(z|x) ≈ pθ(z|x)

We have not solved everything by doing all of the above: The ELBO
still has some tricky terms (one in particular)!

Now back to looking at more general cases, and we will solve the
tricky term along the way.
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Variational Bayes
A setting where we can be fully Bayesian and follow exactly the same
steps as in the Pyro setup above, is one where we have a model
without any latent variables and parameters θ which we now treat as
random variables.

In this case we get the ELBO by marginalising out the parameters:

log p(x(n)) =
∫

θ
p(x(n), θ) dθ

≥ Eq

[
log p(x(n)|θ)

]
+ Eq [log p(θ)] − Eq [log qϕ(θ)]

A very illustrative example in this setting is given in (Murray 2018c)
and (Murray 2018d) for Bayesian logistic regression.
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Stochastic variational inference (SVI)

The tricky term in the ELBO: Eq

[
log pθ(x(n)|z(n))

]
In SVI, we approximate this term by sampling (Resnik and Hardisty
2010):

Eq

[
log pθ(x(n)|z(n))

]
≈ 1

L

L∑
l=1

log pθ(x(n)|z(l))

where z(l) ∼ qϕ(z) are samples from qϕ(z). We often use a single
sample L = 1.

For the variational Bayes setting above without latent variables, we
would similarly have

Eq

[
log p(x(n)|θ)

]
≈ 1

L

L∑
l=1

log p(x(n)|θ(l))

where θ(l) ∼ qϕ(θ) are samples from qϕ(θ).

Doing this allows us to use the reparametrisation trick, which allows
for gradient calculation if we are using an automatic differentiation
framework. This is one of the key things that are enabling black-box
inference in toolkits like Pyro. And (again!) this is also what is done
in a variational autoencoder. To understand this, let’s look at an
example.
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The reparametrisation trick
The guide: We look at a (somewhat) concrete example, where we
use a diagonal Gaussian as our guide qϕ(z). The guide qϕ(z) also
depends on x since it is an approximation for pθ(z|x). So I will write
qϕ(z|x). We obtain the parameters of the diagonal Gaussian from x,
by passing it through a small neural network with parameters ϕ. With
all of this, we can write our guide as

µ, log σ = NeuralNetϕ(x)
qϕ(z|x) = N (z|µ, diag(σ2))

Optimisation: We want to optimise J(ϕ, θ) in terms of both ϕ and
θ. Above we showed that we can deal with the tricky term in the
ELBO using sampling. E.g. we could estimate the gradients for ϕ:

∂

∂ϕ
Eq

[
log pθ(x(n)|z(n))

]
≈ 1

L

L∑
l=1

∂

∂ϕ
log pθ(x(n)|z(l))

where z(l) ∼ qϕ(z|x(n)).

This all seems fine, but the problem is that there is sampling involved
in getting z(l). How do we get the gradient through a sampling block
where some randomness happens?!

x(n)

ϕ

µ σ

NeuralNetϕ

Sample

z(l)
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The trick: We take the randomness out of the block.

Formally, we express z(l) ∼ qϕ(z|x(n)) as a differentiable transformation
of a sample ϵ(l) from another distribution that is independent of both
ϕ and x (Mouton 2023):

z(l) = gϕ(ϵ(l), x)

In our example:

z(l) = µ + σ ⊙ ϵ(l) where ϵ(l) ∼ N (0, I)

x(n)

ϕ

µ σ

NeuralNetϕ

z(l)

+

⊙ ϵ(l) ∼ N (0, I)

Now we can get the gradients through the sampling block!
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Variational Bayesian expectation maximisation
(VBEM)
An alternative to SVI.

Used in models where we have both latent variables and parameters
which are now treated as random variables and then marginalised out
(i.e. we are really Bayesian now).

In this case the ELBO is:

log p(x(n)) = log
∫

z

∫
θ

p(x(n), z, θ) dθ dz

≥
∫

z

∫
θ

q(z, θ) log p(x(n), z, θ)
q(z, θ) dθ dz

In VBEM we use the mean-field assumption:

q(z, θ) = q(z)q(θ)

The ELBO then becomes

−J(q) =
∫

z

∫
θ

q(z, θ) log p(x(n), z, θ)
q(z, θ) dθ dz

=
∫

z

∫
θ

q(z)q(θ) log p(x(n), z, θ)
q(z)q(θ) dθ dz

= Eq(z)q(θ)
[
log p(x(n), z, θ)

]
− Eq(z) [log q(z)] − Eq(θ) [log q(θ)]

In VBEM we now alternate between two steps:

• E-step: Keep q(θ) fixed and find q(z).

• M-step: Keep q(z) fixed and find q(θ).
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Barber (2020, Alg. 11.4) shows that with the ELBO as above we get
the following EM algorithm:

• E-step:

q(new)(z) = arg max
q(z)

{
Eq(z)q(old)(θ)

[
log p(x(n), z, θ)

]
− Eq(z) [log q(z)]

}
∝ exp

{
logEq(old)(θ)

[
log p(x(n), z|θ)

]}

• M-step:

q(new)(θ) = arg max
q(θ)

{
Eq(new)(z)q(θ)

[
log p(x(n), z, θ)

]
− Eq(θ) [log q(θ)]

}
∝ p(θ) exp

{
logEq(new)(z)

[
log p(x(n), z|θ)

]}
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Variational message passing (VMP)
Mentioned briefly by Murphy (2012, Sec. 21.7).

This is an alternative to VBEM.

Can be used with directed graphical models where all the conditional
probability distributions are in the exponential family.

You sweep over the graph, updating nodes one at a time, very similar
to Gibbs sampling.
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Thoughts on variational inference
The math can get quite hairy (compared to sampling).

SVI is where neural networks are starting to meet PGMs. But has this
made a massive difference?
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Conclusion
Where are PGMs useful?

• Problems where you have structure, where you have a proper
“model”.

• Known unknowns.
• It is cool that PGMs generalise and draw things together, and

it is a tool that allows us to do this.

But . . .

At the same time it feels like in practice you still end up having to
derive and implement most things specifically for a particular model.

Is it always “better” to be Bayesian? In a lot of my reading this comes
through implicitly, and this is a big question to ask. (I like MAP.)

You have convinced us that probabilistic modelling is useful, but do
we really need the graphically?

• In belief propagation: Yes, representation, learning and inference
is on a graph.

• For sampling and variational inference: No, not really.
• Actually, what is a PGM? Maybe it is specifically coupled to

belief propagation.
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