
Yet another introduction to backpropagation

Herman Kamper

kamperh@gmail.com

Published: 2017-11-14 Updated: 2022-06-13

1. Introduction

This is my attempt at a concise introduction to backpropagation. There are also a number
of other, very good introductory texts (references given at the end). One resource I would
recommend going through before reading this document, is the CS231n backpropagation
notes [1].

2. The chain rule

Backpropagation is essentially the chain rule applied in a particular order. Here I first
review the chain rule in its different forms.

Suppose we have variable y = f(x) (i.e. variable y depends on variable x), and
variable x = g(t) (i.e. x in turn depends on t). Then the chain rule for functions of a
single variable states [2, p. 967]:

dy

dt
=
dy

dx

dx

dt

If we have a variable z = f(x, y) that depends on multiple variables (x and y in this
case), and variables x = g(s, t) and y = h(s, t) themselves depend on multiple other
variables (s and t), then we can calculate partial derivatives using this version of the
chain rule [2, p. 969]:

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
(1)

and similarly for ∂z
∂t .

More generally, if we have a scalar variable y = f(u) that depends on a vector
u ∈ RM , and that vector is itself computed as u = g(x) from another vector x, then the
general version of the chain rule states [2, p. 970]; [3, §4]:

∂y

∂xi
=

M∑
j=1

∂y

∂uj

∂uj
∂xi

(2)

All these identities are also given on Wikipedia [4] (you might just need to scroll around
a bit).

1

3. Backpropagation (using an example)

3.1. An example function and computational graph

Suppose we have the function

f(x, y) =
x+ σ(y)

x2 + y
(3)

where σ(·) is the sigmoid function. This function is used only for illustration and is
pretty useless otherwise.

A computational graph breaking this function into simple operations (for which we
know the derivatives) is shown in Figure 1. This is similar to the graphs described in [5].
Given we perturb the input x by a little, this will cause a change in c, which would cause
a change in d, and so forth, until it causes a change in the final output f . We want to
know how the change in x affects the output f , and similarly for y. Given such a graph,
our aim (for this particular example) is therefore to find ∂f

∂x and ∂f
∂y , and to do so using a

generic algorithm with steps that we can follow.

x

y

f

(·)2 +

σ(·) +

×

1
·

c d

e

b

a

Figure 1: The computational graph for the function f(x, y) = x+σ(y)
x2+y .

w

u

v

∂f
∂w

∂w
∂u

∂f
∂w

∂w
∂v

Figure 2: A generic operation within a larger computational graph. The output of the
entire computational graph is assumed to be f . Backpropagation of variable w through
the operation to input variables u and v are shown in blue.

3.2. The backpropagation algorithm

We will use the backpropagation algorithm, which has the following steps:

• Forward pass. Start at the inputs and proceed towards the output, calculating the
output value of each of the intermediate operations in the graph. In Figure 1, the
operations are indicated as blocks. Store these values for use in the backward pass.

• Backward pass. Start at the output of the computational graph and move back-
wards. For each operation you encounter, do the following:

2

– Determine and calculate the derivative of the output variable with respect to
each of the inputs to that operation. For the operation in the graph fragment
shown in Figure 2, we would calculate ∂w

∂u and ∂w
∂v . This is easy if our blocks

are well-known operations for which we know the derivatives.

– For each input variable u, add ∂f
∂w

∂w
∂u to an accumulator for that variable,

where w is the output of that operation and f is the final output of the entire
computational graph. The term ∂f

∂w would have been calculated earlier in the
backward pass. For the variables u and v in the graph fragment of Figure 2,
we would update the accumulators denoted as δu and δv.

– After adding to an accumulator all the backpropped values coming from
operations that has u as input, that accumulator will contain as its final
value δu = ∂f

∂u , which we can then use in subsequent backward steps for other
variables. The reason why this works is described in Section 3.4.

3.3. Backpropagation applied to the example

Let us follow these steps for the example of (3), with the corresponding graph in Figure 1.
We will write the code in Python.

Assume we start with x = 3 and y = −4, and our goal is to calculate the gradients
at this point. We will have the following code for the forward pass:

Current values

x = 3

y = -4

Forward pass

a = 1.0 / (1 + np.exp(-y)) # (1)

b = x + a # (2)

c = x**2 # (3)

d = y + c # (4)

e = 1.0 / d # (5)

f = b * e # (6)

Before we write the code for the backward pass, let us find expressions for some of
the derivatives. Starting from the output of the final operation, we move backwards
calculating derivatives and updating the accumulators for all the variables. We do this
in the opposite order that we followed for the forward pass. So let us start with the final
output: f = b · e. Here ∂f

∂b = e and ∂f
∂e = b. The values for these expressions are known,

since we calculated them in the forward pass. They are now added to the accumulators
for b and e. Since a and b are not inputs for any other operations, no other terms are
added and we have the final accumulator values δb = ∂f

∂b = e and δf = ∂f
∂e = b, which we

can now use in subsequent backward steps.
Next we “backprop” the operation e = 1

d , then d = y + c, and so forth. Let us see
how we backprop b = x+ a. The derivatives of the output with respect to the inputs
for this operation are ∂b

∂x = 1 and ∂b
∂a = 1. We update the accumulators: to δx we add

∂f
∂b

∂b
∂x = δb

∂b
∂x = e · 1, and to δa we add ∂f

∂b
∂b
∂a = δb

∂b
∂a = e · 1; from the previous backward

steps and the forward pass, we have numeric values for all the required variables.
We continue in this way through all the operations. Using delta_d to denote the

accumulator δd in the Python code, the code for the backward pass are as follows (note
this is exactly in the reverse order from the forward pass):

3

Backward pass

Backprop f = b * e

delta_b = e # (6)

delta_e = b # (6)

Backprop e = 1.0 / d

delta_d = delta_e * (-1.0 / (d**2)) # (5)

Backprop d = y + c

delta_y = delta_d * 1 # (4)

delta_c = delta_d * 1 # (4)

Backprop c = x**2

delta_x = delta_c * (2 * x) # (3)

Backprop b = x + a

delta_x += delta_b * 1 # (2)

delta_a = delta_b * 1 # (2)

Backprop a = 1.0 / (1 + np.exp(-y))

delta_y += delta_a * ((1 - a) * a) # (1)

3.4. Why does this work?

Speaking generally, for any variable u in a graph, we are interested in δu = ∂f
∂u , since this

tells us what the effect is on the final output of the computation f when we perturb u.
If we proceed from the output and move towards the input, calculating derivatives as
we go, the backpropagation algorithm allows us to calculate δu = ∂f

∂u (for all variables).
If u serves as input only for a single computational operation, say with output v, then
we just use the simple form of the chain rule: δu = ∂f

∂u = ∂f
∂v

∂v
∂u . If u forks out, serving

as input for two operations (say with outputs h and g), then we use the version of the
chain rule given in (1), i.e.:

δu =
∂f

∂u
=
∂f

∂h

∂h

∂u
+
∂f

∂g

∂g

∂u

In our example above, both x and y forks in this way, which is why we add to their
accumulators when we backprop b and a in the code for the backward pass (the lines
marked with (2) and (1) in the code above). If a variable forks out to more than two
operations, the backpropagation algorithm is really just using the general chain rule given
in (2). The result of the backpropagation algorithm is that each δu contains ∂f

∂u (the
derivative of the final output f with respect to variable u), and we have these derivatives
for all the variables in the computational graph.

One other useful property is that if you design a new computational block, it can
be inserted easily into the backpropagation algorithm as long as you know two things:
(i) how to calculate the output of the operation using its input variables (you need this
for the forward pass, but this is trivial since it is just the definition of the computation);
and (ii) how to calculate the derivatives of the output of the block with respect to all
the inputs (for the backward pass). Before packages like Theano and TensorFlow came

4

along with automatic differentiation, some neural network packages like MatConvNet
was structured in this way [6].

4. Feedforward neural network (using vectors)

4.1. Vector and matrix calculus

In Section 3 we only used scalar variables. It is relatively easy to generalize the back-
propagation algorithm to vectors (or even matrices). But ultimately, vector and matrix
operations can still be reduced to simple scalar operations. However, there is a benefit in
vectorization: we can take advantage of efficient matrix algebra packages (like NumPy).

I start by giving the definitions and identities we will use. I use the denominator
layout to do vector and matrix calculus [7,8].1 The Wikipedia article [7] also gives all
the identities used here.

The derivative of a scalar function f : RN → R with respect to vector x ∈ RN is
defined as

∂f(x)

∂x
,



∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xN

 (4)

The derivative of a vector function f : RN → RM , where f(x) =[
f1(x) f2(x) · · · fM (x)

]T
, with respect to vector x ∈ RN , is

∂f(x)

∂x
,



∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xN

 =



∂f1(x)
∂x1

∂f2(x)
∂x1

· · · ∂fM (x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

· · · ∂fM (x)
∂x2

...
...

...
...

∂f1(x)
∂xN

∂f2(x)
∂xN

· · · ∂fM (x)
∂xN

 (5)

The derivative of a scalar function f : RM×N → R with respect to matrix X ∈ RM×N is

∂f(X)

∂X
,



∂f(X)
∂X1,1

∂f(X)
∂X1,2

· · · ∂f(X)
∂X1,N

∂f(X)
∂X2,1

∂f(X)
∂X2,2

· · · ∂f(X)
∂X2,N

...
...

...
...

∂f(X)
∂XM,1

∂f(X)
∂XM,2

· · · ∂f(X)
∂XM,N

 (6)

Given these definitions, we can generalize the chain rule. Given u = h(x) (i.e. u is a
function of x), the vector-by-vector chain rule states:

∂g(u)

∂x
=
∂u

∂x

∂g(u)

∂u
(7)

1In the denominator layout, the shape of the derivatives matches that of the argument, e.g. the shape
of ∂f(X)

∂X
is the shape as that of X. This makes it convenient when writing out the expression for gradient

descent, e.g. W←W − η ∂J
∂W

. If we used denominator layout, then ∂J
∂W

would be the Jacobian and you
would have to take the transpose in the gradient descent equation.

5

where g is a vector function. For the vectorized version of backpropagation, we will use
this version of the chain rule.

4.2. Backpropagation for a feedforward neural network

Using the vectorized version of the approach of Section 3, let us derive the backpropagation
equations for a feedforward neural network, and see if we obtain similar equations to the
more traditional way of explaining neural networks, as e.g. in [9] and [10, §16.5.4].

x

W[1] b[1]

z[1] a[1] a[L−1] z[L] a[L]

ŷ
‖ · ‖2 Jg(·) g(·) g(·)

hidden layer 1 layer L− 1 activation

W[2] b[2] W[L] b[L]

Figure 3: The computational graph for a feedforward neural network. Here all the
intermediate variables are vectors.

Figure 3 shows the computational graph for an L-layer feedforward neural network.
We consider a single training example (x,y) with input x ∈ RK and true output y ∈ RD.
The prediction from the network is ŷ ∈ RD. Our aim is to find the derivatives of all the
parameters with respect to the cost J = ||y − ŷ||2. If we have all these gradients, we
will be able to optimise the network parameters using gradient descent.

The feedforward equations are as follows:

z[1] = W[1] x + b[1] (8)

a[1] = g(z[1]) (9)

· · ·
z[l] = W[l] a[l−1] + b[l] (10)

a[l] = g(z[l]) (11)

· · ·
z[L] = W[L] a[L−1] + b[L] (12)

a[L] = g(z[L]) = ŷ (13)

J = ‖y − ŷ‖2 =
∥∥∥y − a[L]

∥∥∥2 (14)

with g(·) the nonlinearity (e.g. sigmoid, tanh or ReLU) applied element-wise. As
illustrated in Figure 3, the term hidden layer refers to the entire computation from the
input (the output of the previous layer) to the output of that layer; the output a[l] itself
is normally called the activation of the layer.

For the backward pass, we just follow the steps from Section 3. Because there are
no forks, each backpropogation step will give us the final accumulator values, so we do
not really need to think of these in terms of accumulators (they immediately take on
the values of the gradients). We start at the final operation, ‖ · ‖2, and backprop to its
input:

δa[L] =
∂J

∂a[L]
=

∂

∂a[L]

∥∥∥y − a[L]
∥∥∥2 =

∂

∂a[L]
(y − a[L])>(y − a[L]) = −2(y − a[L]) (15)

6

where we use (7) together with the identity:

∂x>x

∂x
= 2x

No we backprop a[L] = g(z[L]) to the variable z[L]:

δz[L] =
∂J

∂z[L]
=
∂a[L]

∂z[L]
∂J

∂a[L]
=
∂a[L]

∂z[L]
δa[L] (16)

The last term on the right hand side we know, since we already calculated it in (15).
The first term is:

∂a[L]

∂z[L]
=

∂

∂z[L]
g(z[L]) = diag

(
g′(z[L])

)
(17)

where g′(z[L]) is the element-wise derivative of the nonlinearity with respect to the input
vector z[L]. The diagonalization is necessary from the definition in (6). We can just check
that all the dimensions work out for the backpropogation step in (16). We know that
δz[L] is a vector in RD (since z[L] has the same dimensionality as the predicted output ŷ).

The term in (17) will have dimensionality ∂a[L]

∂z[L] ∈ RD×D, and since δa[L] = ∂J
∂a[L] ∈ RD,

all the dimensions in (16) work out. Taking everything together, we have the following
backpropogation step:

δz[L] =
∂J

∂z[L]
= diag

(
g′(z[L])

)
δa[L] = δa[L] � g′(z[L])

where � indicates element-wise multiplication.
Next we backprop z[L] = W[L] a[L−1] + b[L] to the input variables W[L] ∈ RD×D[L−1]

,
a[L−1] ∈ RD[L−1]

and b[L] ∈ RD, where D[L−1] is the dimensionality of the penultimate
hidden layer L− 1. The gradients for the last two variables are relatively easy:

δb[L] =
∂J

∂b[L]
=
∂z[L]

∂b[L]

∂J

∂z[L]
= I δz[L] = δz[L]

and

δa[L−1] =
∂J

∂a[L−1]
=

∂z[L]

∂a[L−1]
∂J

∂z[L]
= W[L]> δz[L]

which uses the identity [7]:
∂Ax

∂x
= A>

Backpropping to the variable W[L] is a bit more involved. We want to find the term

δW[L] =
∂J

∂W[L]
∈ RD×D[L−1]

(18)

with the dimensions according to (6). But there is no easy chain rule for the derivative
of a scalar (or vector) with respect to a matrix [7]. A number of solutions are possible; I
mention four. First, you can try and get an expression for the chain rule that includes
matrices, but things gets difficult because the derivative of a vector with respect to a
matrix is a tensor; this approach is mentioned in [11]. Another approach is to flatten the
matrix W[L] into a single vector, and then just use the vector chain rule in (7). This
is the approach followed in [6], and is a pretty good option. The third approach is to
wing it and just use the matrix dimensionalities to figure out (more-or-less) what to do.

7

a z

W b

Figure 4: The graph fragment for a single linear layer.

In this case, we know that ∂J
∂W[L] will consist of a term times δz[L] = ∂J

∂z[L] . The missing

term would probably be something looking like a[L−1], and from the dimensionalities we
can figure out the correct orientation (i.e. whether we need to transpose anything). This
is the approach used at the end of [1].

I follow the fourth option, which is to just write out the individual matrix elements,
and then subsequently vectorize the expressions again. Just for now, I drop the L and
L− 1 superscripts and use subscripts to denote element indices. Without the vector and
matrix superscripts, we are currently considering z = Wa + b, as illustrated in Figure 4.

Each element of z is given by:

zi = bi +

DL−1∑
j=1

Wi,j aj (19)

which means we can write

∂J

∂Wi,j
=
∂J

∂zi

∂zi
∂Wi,j

= [δz]i aj

According to the definition in (6), this can be written in vectorized form as

∂J

∂W
= δz a

> (20)

Adding back in the appropriate vector and matrix superscripts, we have

δW[L] =
∂J

∂W[L]
= δz[L] a[L−1]>

and since δz[L] ∈ RD and a ∈ RD−1, we get the right dimensionality δW[L] ∈ RD×D[L−1]
.

We therefore have the following equations for an arbitrary layer l:

δz[l] = δa[l] � g′(z[l]) (21)

δb[l] = δz[l] (22)

δW[l] = δz[l] a
[l−1]> (23)

δa[l−1] = W[l]> δz[l] (24)

These match up exactly with the equations given in [12]. In more traditional explanations
such as [9] and [10, §16.5.4], equations (21) and (24) are typically combined into one:

δz[l] =
(
W[l+1]> δz[l+1]

)
� g′(z[l])

This has the benefit of making the recursive nature of the backpropagation algorithm
clear since δz[l] is calculated using δz[l+1] . In these explanations, the δ’s are sometimes

8

referred to as “error terms” or “error signals”, since you could see them as indication of
how much a particular layer (or unit) is “responsible for any errors in the output” [9].

The issue is that many of these traditional explanations can become quite rigid. It is
then difficult to see how flexible backpropagation is in that it can be applied to much
more complicated architectures than the simple feedforward neural network of Figure 3.
For example, this network does not contain any forks (in contrast to the example of
Section 3), and seeing how weight sharing would be implemented is a bit hard.

5. Going even more general

5.1. Operations with matrices as inputs and outputs

At the end of Section 4.2 we saw that to get an expression for the accumulator δW in an
operation with a matrix as input and a vector as output (Figure 4) can be a bit tricky.
Fortunately once we have the expression, we can re-use it. So let’s looks at an even more
difficult (and more general) case when we have a matrix as both input and output of an
operation. If we can solve this, then we have the building blocks for backpropogation
through most neural network structures. This section is based roughly on [13].

×

B>

A

C

Figure 5: A graph fragment for a multiplication operation between two matrices.

We will consider the graph fragment in Figure 5 and derive expressions for the error
signals δB and δA. We have C = AB> with C ∈ RN×D, A ∈ RN×K and B ∈ RD×K .
If we know δC, how do we calculate δA and δB? Let’s get an expression for the latter.

Individual elements of C are given by

Ci,j =
K∑
k=1

Ai,k Bj,k

From the generalization of the chain rule (2), this means that

∂J

∂Bm,p
=

N∑
n=1

D∑
d=1

∂J

∂Cn,d

∂Cn,d

∂Bm,p

We know ∂J
∂Cn,d

since these are just the elements of δC. So we need to find the second

term in the product:

∂Cn,d

∂Bm,p
=

∂

∂Bm,p

[
K∑
k=1

An,k Bd,k

]

=
∂

∂Bm,p
[An,1Bd,1 +An,2Bd,2 + . . .+An,K Bd,K]

= An,p I {m = d}

9

where I{·} is the indicator function. This means that

∂J

∂Bm,p
=

N∑
n=1

D∑
d=1

∂J

∂Cn,d
An,p I {m = d}

=
N∑

n=1

[
∂J

∂Cn1
An,p I {m = 1}+

∂J

∂Cn2
An,p I {m = 2}+ . . .

+
∂J

∂CnD
An,p I {m = D}

]
Only the mth term in the summation is non-zero, i.e.

∂J

∂Bm,p
=

N∑
n=1

∂J

∂Cn,m
An,p

[δB]m,p =

N∑
n=1

[δC]n,mAn,p

These are the individual elements of δ>CA:

[
δ>CA

]
m,p

=
N∑
k=1

[δC]k,mAk,p

This means that
δB = δ>CA (25)

and in a similar way you can show that

δA = δCB (26)

5.2. Tensors and the most general chain rule

We could go even further and ask what happens when we have tensors as inputs and
outputs. I don’t want to get into that too much, but it is worth pointing out the following.

First, we actually dealt with tensors implicitly in Section 5.1. That is because we
implicitly worked out

∂C

∂B

which, in the most general case, is a tensor containing all the partial derivatives [14, §5.4].
Second, without explicitly defining tensor operations (or even their shapes), I will

just give the most general case of the chain rule [15, §4.7]:

∂G(U)

∂X
= prod

(
∂U

∂X
,
∂G(U)

∂U

)
(27)

This is in direct analogy to (7), except that here all the variables are tensors. The prod
operator captures all the necessary details: transpositions, swapping input positions and
anything else that is needed to deal with tensors. So this operator hides a lot of the
notational overhead.

Note that (7) is a special case of (27). Also note how (20), (25) and (26) all implicitly
use (27).

10

References

[1] CS231n: Optimization 2. [Online]. Available: http://cs231n.github.io/
optimization-2/

[2] J. Stewart, Calculus, 5th ed. Thomson Learning, 2003.

[3] R. Lipshitz. Linear maps, the total derivative and the chain rule. [Online]. Available:
https://www.math.columbia.edu/∼lipshitz/teaching/Linearization.pdf

[4] Chain rule. [Online]. Available: https://en.wikipedia.org/wiki/Chain rule

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

[6] A. Vedaldi and A. Zisserman. (2016) VGG convolutional neural networks practical.
[Online]. Available: http://www.robots.ox.ac.uk/∼vgg/practicals/cnn/

[7] Matrix calculus. [Online]. Available: http://en.wikipedia.org/wiki/Matrix calculus

[8] H. Kamper. (2013) Vector and matrix calculus. [Online]. Available: http:
//www.kamperh.com/notes/kamper matrixcalculus13.pdf

[9] UFLDL: Backpropagation algorithm. [Online]. Available: http://deeplearning.
stanford.edu/wiki/index.php/Backpropagation Algorithm

[10] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA:
MIT Press, 2012.

[11] M. P. Deisenroth. (2017) Deep Learning Indaba: Mathematics for deep
learning. [Online]. Available: http://www.deeplearningindaba.com/uploads/1/0/2/
6/102657286/2017-09-10-deep-learning-indaba.pdf

[12] I. Murray. (2016) MLPR: Backpropagation of derivatives. [Online]. Available:
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w5a backprop.html

[13] ——. (2018) MLPR: Tutorial 5. [Online]. Available: https://www.inf.ed.ac.uk/
teaching/courses/mlpr/2018/tut/tut5 questions.html

[14] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine Learning.
Cambridge University Press, 2020.

[15] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. (2021) Dive into deep learning.
[Online]. Available: https://d2l.ai/

11

http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
https://www.math.columbia.edu/~lipshitz/teaching/Linearization.pdf
https://en.wikipedia.org/wiki/Chain_rule
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/
http://en.wikipedia.org/wiki/Matrix_calculus
http://www.kamperh.com/notes/kamper_matrixcalculus13.pdf
http://www.kamperh.com/notes/kamper_matrixcalculus13.pdf
http://deeplearning.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://deeplearning.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://www.deeplearningindaba.com/uploads/1/0/2/6/102657286/2017-09-10-deep-learning-indaba.pdf
http://www.deeplearningindaba.com/uploads/1/0/2/6/102657286/2017-09-10-deep-learning-indaba.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w5a_backprop.html
https://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/tut/tut5_questions.html
https://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/tut/tut5_questions.html
https://d2l.ai/

	Introduction
	The chain rule
	Backpropagation (using an example)
	An example function and computational graph
	The backpropagation algorithm
	Backpropagation applied to the example
	Why does this work?

	Feedforward neural network (using vectors)
	Vector and matrix calculus
	Backpropagation for a feedforward neural network

	Going even more general
	Operations with matrices as inputs and outputs
	Tensors and the most general chain rule

